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A QUADRAPARAMETRIC FAMILY OF
EIGHTH-ORDER ROOT-FINDING METHODS

Younc Ik Kiv*

ABSTRACT. A new three-step quadraparametric family of eighth-
order iterative methods free from second derivatives are proposed
in this paper to find a simple root of a nonlinear equation. Con-
vergence analysis as well as numerical experiments confirms the
eighth-order convergence and asymptotic error constants.

1. Introduction

High-order iterative methods have been investigated by many re-
searchers such as Bi-Ren-Wu[l], Bi-Wu-Ren[2], Chun-Ham[3], Kou-Li-
Wang[6], Ren-Wu-Bi[7], Wang-Kou-Li[10] and Wang-Liu[11]. These meth-
ods have convergence order of at least 6 and are 3-step second derivative-
free methods, the 2nd-step of which frequently uses King’s fourth-order
method[5], Jarratt’s fourth-order method[4] or their variants. Undoubt-
edly, special attention has been paid to high-order iterative methods
free from second derivatives to find a numerical solution of a nonlinear
equation f(xz) = 0. In this paper, a three-step quadraparametric fam-
ily of eighth-order methods free of second derivatives are proposed with
their convergence results as well as numerical experiments for various
test functions.

Let f : C — C have a simple root a and be analytic in a small region
containing «. A parametric family of three-step iterative methods are
considered below: for n =0,1,--- |
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Yn = Tn — F(an)’ o)
Zn = Yn — Kf(xn) f/(?ir;)’ (1.1)

Tn+l = 2n — Wf (!Tn) f’((itl))’

where, denoting u, = f(yn)/f(xn) and v, = f(z,)/f(zn),
1+ Buy, + \u?

Ke(z,) = , 1.2

() L+ (8 = 2)up + pu, (12)
1+ au, + bu,

We(an) = ——m—i—, 1.3

7(n) 1+ cu, + duy, (1.3)

with 8, A, u, a, b, c and d as constant parameters to be determined later.
We immediately find that both Ky and W; are extensions proposed
from classical King’s method[5]. Functions Ky and W} can be viewed
as weighting functions for error terms z, — y, and xp1 — 2y, respec-
tively. With a proper selection of the constant parameters based on the
analysis to be presented in Section 2, they play a crucial role of maxi-
mizing the order of convergence up to 4 and 8 in the second step and
third step. Observe that (1.1) requires 5 new function evaluations for
F(@n), f(yn), f(zn), f'(xy) and f'(z,) per iteration. We wish to reduce
the number of function evaluations by one. To this end, we approxi-
mate f'(zy,) using f(xn), f(yn), f(2n), f'(xs). Taylor series expansion of
1/ (zn) about y,, leads to an approximation:

F'(zn) = f'(yn) + £ (yn) (20 — yn)- (1.4)

The fact that y,, = z, for sufficiently large values of n yields the following
approximations:

f(zn) = fyn)

f(yn) = W’ (1.5)
i~ S (@) = f(zn)
f(zn) = W, (1.6)
1 ~ I _ f/(zn) - f,(xn) - W - f,(xn)
f'(yn) = f(zn) = P S NN

Hence, f'(z,) in (1.4) now approximates

fen) = fl) (2= (fon) = o)

Zn — Yn Zn — Tn

f(zn) =
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Consequently, (1.1) can be rewritten as follows: with Ky and Wy de-
scribed as in (1.2) and (1.3), respectively

_ _ f(zn)
Yn = Tn = F(z,) o
Zn = Yn — Kf(acn)f,(zc’:L , (1.9)

where

F(I‘n) _ f(zn) - f(yn) +<

—f(x > , (1.10
ot Fen)), (1.10)

explicitly depending on f(zy,), f(yn), f(zn), f/(x,) not on f'(yy,).
Note that (1.9) now requires only four function evaluations for f(zy,),
f(n), f(zn), f'(xy) per iteration. The main objective of this paper is to
show iteration scheme (1.9) has eighth-order convergence with relations

Zn —yn> (f(zn) ACD)

Zn — ITn Zn — ITn

1

ﬁzi(k—u—l),c:a,d:b—l (1.11)
or equivalently with relations below:
L+ 2N —p— Dup + M2
1+ 2N = p—B5)uy + pu’
B 1+ au,, + bu,
14 au, + (b—2)v,’
where A, i1, a and b are four independent constant parameters to be freely
chosen in R. In addition, deriving the asymptotic error constant or
error equation is another goal of this paper. To measure convergence
behavior within a given error bound, the values of |x,, — | of proposed

scheme (1.9) will be compared made with those of the existing seventh-
or eighth-order methods some of which are described as follows.

(1) Kou-Li-Wang|[6]: seventh-order method

Ky(z,) =

(1.12)

Wi (zn) (1.13)

Un = 0 = 15
anxn_%, (114)

Tn4+1 = Bn — [(1 + H2($n,yn))2 + HO(yna Zn)] ]{/((ZT;)), 0 e R7

with Hy(y, z) = %. The error equation of this method is asserted

f9(a)

(@) oF

in [6] to satisfy the relation with e, = z, — a and ¢; =
j=2.3,4:

eni1 = —2(c3% — 2ca%c3 + cacq) (ca® — e3)el + O(ed). (1.14a)
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REMARK 1.1. In fact, error equation (1.14a) asserted in the paper by
Kou, Li and Wang[6] has been found to be incorrect and needs to be
completely corrected as the following;:

ent1 = dca?(c2® — c3)%en” + O(e,®). (1.14b)
(2) Bi-Ren-Wull]: eighth-order method
Yn = Tp — ]{(In) s

/(mn
_ Qf(xn)_f(yn) f(yn)
#n = Yn = 3f(wn)=5f (yn) [ (wn)’

_ . f($")+(2+9)f(zn) . f(Zn)
Tntl = 20 = ) 105 ) TEmwn Gl 0 € B
(1.15)
where f[z,y] = %‘5(‘”) and f[z,z,z] = W Observe that this

method is a special case when A =y =01n (1.12) and a = 0,0 =2+ 6
in (1.13). The error equation of this method satisfies

enil = 62263(3623 + 2coc3 — 04)en8 + O(eng). (1.15a)
(3) Bi-Wu-Ren|2|: eighth-order method
N €1
Yn = I Plan)

_ fln)  12/3 flyn)
#n=Yn — [f(:cn)—:%f(yn)]

(@)
_ f(@n)+2+0)f (zn) f(zn)
o+l = Zn = f(@n)+0f(2n) ' Flznyn]+flzn,en,2n](2n—yn)’ o €R.
(1.16)
The error equation of this method satisfies
4
En+1 = 62263(3623 + 20203 — C4)6n8 + O(eng). (1.16&)

Some interesting choices of four parameters (A, p,a,b) in (1.12) and
(1.13) will be further discussed in Section 2. Observe that (1.9) has
four function evaluations per iteration and its efficiency index[9] is same
as that of 3-step methods mentioned above. It’s convergence order is
optimal as well as consistent with the conjecture of Kung-Traub[8]. The
advantage of proposed method (1.9) is that we can choose four free
parameters as compared with methods (1.14), (1.15) and (1.16) having
only one free parameter. Such a choice of four free parameters (A, p, a, b)
gives a wide range of iterative methods which can be conveniently chosen
from, depending on problems, to find a numerical root of the given
nonlinear equation f(x). Section 3 will discuss numerical experiments
for various test functions.
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2. Main results

Development of proposed scheme (1.9) and its convergent analysis
will be described in Theorem 2.1 below:

THEOREM 2.1. Let f and o be described as in Section 1. Let ¢j =

f(jz(a) for j = 2,3,---. Assume that all three values co,c3 and cy4 are
it (@)
not vanishing simultaneously. Let xqg be an initial guess chosen in a
sufficiently small neighborhood of a. Let 8 = 3(A—p—1), ¢ = a
and d = b—2 with A\, u,a and b as independent parameters freely chosen
in R. Then with K¢(xy) in (1.2) and Wy(z,) in (1.3), iteration scheme
(1.9) defines a quadraparametric family of eighth-order methods and
gives its error equation by

eni1 = c22c3{2(a+ 1)cacs — ca + (X — pu+ 3)Yed + 0(e2), (2.1)
where e, = xp, —a form=0,1,2,---.

Proof. Taylor series expansion of f(z,) about a up to ninth-order
terms yields with f(a) = 0:

flxn) = f’(a)(en + 626721 + 6362 + 646;11 + 0562 + 0662

tcrel + cged 4 coed + 0(elD)). (2.2)
For ease of notation, e, will be denoted by e (not to be confused with
Napier’s base for natural logarithms) for the time being. A lengthy
algebraic computation induces relations (2.3)-(2.7) below:

f'(zn) = f'(@)(1 + 2coe + 3cze® + 4eqge® + Sese + 6ege’ + Terel
+8cge” + 9cge® + O(e?)), (2.3)

= e — c9e? +2(c3 — c3)ed 4+ (—4c3 + Teaes — 3cd)et+

(8¢5 — 20c3cs + 6¢3 + 10cacy — 4es)e+
(—16¢5 + 52c3c3 — 33cacs — 28c3cs + 17czeq + 13cacs — 5eg)eb+
2(16¢5 — 64cses — 95 + 36¢3cy + 6¢5 + 9ca(Tca — 2¢5)+
11czes + co(—46c3cs + 8cg) — 3er)e” + (—64ck 4 304c3c3 — 176¢hcq—
75c3¢q + 3leges + ¢ (—408¢2 4 92¢5) + 4¢3 (8Tczeq — 11cg) + 2Tcsce+
c2(135¢3 — 64c% — 118c3c5 + 19¢7) — Teg)e® + O(e?), (2.4)

=+ cae? —2(ch — c3)e + (4¢3 — Teacs + 3cd)et —
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2(4ch — 10c3cs + 3¢3 + Seacy — 2¢5)e®+
(1663 — 520%63 + 330203 + 286%64 — 17cgcq — 13c9c5 + 566)66—
2(16¢5 — 64c3es — 95 + 36¢3cy + 6¢5 + 9c3(Tca — 2¢5)+
11leses + co(—46¢3cq + 8cg) — 367)67 + (6405 — 304052’03 + 1760‘21044—
75c3cy — 3leges + c3(408¢2 — 92¢5) — 4c3(8Tczeq — 1lcg) — 2Tczes—
ca(135¢5 — 64c3 — 118ccs + 19¢7) + Teg)e® 4+ O(e?), (2.5)

fyn) = f'(@)(c3e? — 2(c3 — c3)e3 + (5¢5 — Teaes + 3eq)et—
2(6c5 — 12¢3c3 + 3¢3 + Seacy — 2¢5)e®+
(28652) — 730303 + 37CQC§ + 346%64 — 17cgcq — 13c9c5 + 566)66—
2(32¢§ — 103chc3 — 9¢3 + 52¢5cq + 62 + 3(80c3 — 22¢5)+
11eses + ca(—52c3cq + 86) — 3cr)e’ + (144¢h — 552¢5¢3 + 297ches+
750%64 + 20%(2916% — 67cs) — 3legcs — 27cscs + c3(—455c3cq + Hdeg)+
co(—147¢3 + 73¢% 4 134c3c5 — 19¢7) 4 Teg)e® + O(e?)). (2.6)

f(yn)
(—20031 + 376%03 — 80% — ldegey + 405)e4+
(4803 — 1186%63 + 55CQC§ + 510%64 — 22c3c4 — 18cocs + 566)65—|—
(—112¢§ + 344c3es — 252¢3¢2 + 26¢3 — 163c3cq+
150¢zc3¢4 — 1562 4 65¢3cs — 28c3cs — 22¢a¢6 + 6c7)e’+
(256¢% — 944c5c3 + 480c5cy + 105¢2cs + ¢3(952¢2 — 207¢s5) — 38cqcs—
34esc6+c3(—693c3c4+T9¢6) — 2¢2(11465 — 512 — 95365+ 13¢7) +Teg)e +
(—=576¢5 + 2480cScs — T2¢3 — 1336¢5¢y + 141c3ci+
132c3c5 — 24¢2 + ¢5(—3200c3 4 607c5) + ¢3(2660c3¢4 — 251c6)—
46¢4c6 — 40c3c7 4 3¢3(418¢3 — 159¢3 — 292¢3¢5 + 31cr)+
ca(—936¢2 ¢y + 258c4c5 + 230c3c6 — 30c8) + 8cg)e® + O(e). (2.7

Substituting relations (2.2)-(2.7) into (1.9), we get x4 as follows by
the aid of symbolic computation of Mathematica:

Tptl = 0+ A5e5 + A6€6 + A7€7 + +A8€8 + 0(69), (28)

where A; = A;(a,b,c,d, 5, \, p1)(i = 5,6,7,8,9) are multivariate polyno-
mials in a, b, ¢, d, 8, A and u; for instance,

As = (c— a)ca(—cacs + 2 (1 + 28 — A+ p)). (2.9)

Uy = = coe + (—3¢3 + 2c3)e® + (8¢5 — 10¢acs3 + 3cq)e3+
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We impose conditions A5 = Ag = A7 = 0 and Ag # 0 independently of
c;’s so that iteration scheme (1.9) has eighth-order convergence. Solving
As = 0 for ¢ yields

c=a. (2.10)
Substituting this ¢ into Ag = 0 and A7 = 0 after simplification yields
c3(—2+b—d) +c(—b+d)(1+28 A+ pu) =0,
from which two relations follow independently of co and cs:
d:b—Q,ﬁ:%(A—u—l). (2.11)
Substituting these ¢, d, 8 into Ag after simplification yields
c2e3(2(1 4 a)eges — cq + A3(3+ 5N — p)). (2.12)
Now restoring notation e back to e, in (2.11) yields the error equation

and the asymptotic error constant 1 with convergence order 8, respec-
tively, as follows:

eni1 = c22c3{2(a+ 1)cacs — ey + 23 (5A — 4+ 3)}e,® 4+ O(e,?), (2.13)

En+1
€n

n = lim

n—oo

= ‘62263{2(CL + 1)egez — g + 23 (5A — p+ 3)}

, (2.14)

yielding desired (2.1). Substituting d =b—2 and = 5(A—p—1) found
by (2.11) into (1.2) and (1.3) gives desired K¢(xy,) in (1.12) and We(xy,)
in (1.13). This completes the proof. O

— D=

Although iteration scheme (1.9) defines a quadraparametric family of
eighth-order methods, it is interesting to observe that error equation
(2.13) depends only on three parameters A, i, @ and independent of pa-
rameter b. This kind of parameter-independency for the error equation
occurs frequently as can be seen in many iterative methods such as
(1.14), (1.15) and (1.16). Given choices of parameters, with the in-
troduction of two normalized variables w, = f(yn)/f(zn) and v, =
f(zn)/f(xn), it is convenient to display a variety of Ky(zy,), Wr(xy)
and 7. It also simplifies coding of numerical Algorithm 3.1. Table 1
lists a number of such choices of A, i, @ and b, being accompanied with
K¢ (zp), We(xyn) and 7.
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TABLE 1. Typical choices of a,b, A and p for Ky(xy),
W (zy,) and n

Case (Av M, a, b) Kf(‘r’ﬂ) Wf(itn) n
0 (0,0,0,3) 22:573; % |62203(302‘3 + 2coc3 — C4)|
1—ug, 1—upn
1 (=1,-2,-1,0) 172%“727‘; l—unzi2’u" |c22eseq]
142uy 2 _
2 (72 -7,-1,0) 11:7u$ = lfluniinﬁvn |C22‘33C4|
3 (07 170) ,32,,;‘;ull4u2 1_14;117511” |C2203(5023 - C4)|
9 87 (4+9un) (441ly) 1—up 2., 045 .3
4 (Ev 16’ -1,0) (16+8u, —87u2) T—wup—2on, |c2 c3(F ez _04)‘
9 (4—9up) (4—upn) 1—un, 2. (5.3
5 (E 16’ -1,0) (16— 72un+73us) Ry — ‘CQ e3(ge2 704)|
9 (4—9up)(4tun 1—ug, 2 9.3
6 (=76 10’ -1,0) (4—13%%4—3%) T—un—20n |e2es(Ge2® + ca)
449un) (4—un 1,
7 (71976 16’ -1,0) : 1:;—89«131“ lfun1i2vn |022C3(%623*C4)‘
w2 -,
8 (1,4,-1,2) (19) % |ea2es(dead — ea)|
R R e
140 —u,
10 (1,0,—1,1) :ﬁ[; i_ljifﬁ le22e3(8c2® — ca)|
2
11 (1,-4,-1,2) Qtun) R Er |e22c3(12¢23 — ca)
12 (2717_172) % % ‘02263(1262 C4)|
24uy,)(142u, —u, n .
13 (1,-5,-1,2) fopen) i tm) | L |c22e3(13¢2% — ca)|
14 (5,0,—1,1) 1+ 2up +5u2 | Juntin |ca2e3(28¢2® — ca)|

3. Algorithm, numerical results and discussions

The analysis described in Section 2 allows us to develop a zero-finding
algorithm to be implemented with Mathematica[12]:

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. Construct iteration scheme (1.1) with the given function f having a simple
zero o for n € NU {0} as mentioned in Section 1.

Step 2. Set the minimum number of precision digits. With exact or most accurate
zero «, supply the theoretical asymptotic error constant 7, order of convergence p as
well as ca, c3, ¢4, A and p, a, b stated in Section 2. Set the error bound €, the maximum
iteration number ny,q. and the initial guess zg. Compute |f(zo)| and \mo —al.

Step 3. Tabulate the values of n, zn, [f(zn)], |en] = |2n — al, | 25| and n.

Throughout the numerical experiments, the minimum number of pre-
cision digits was chosen as 350, being large enough to minimize round-
off errors as well as to clearly observe the computed asymptotic error
constants requiring small-number divisions. The zero «a, however, was
separately computed with 700 digits of precision to have 400 signifi-
cant digits, whenever its exact value is not known. The error bound
e = 1073% was used for moderately accurate computation. The values



A quadraparametric family of eighth-order methods 141

of initial guess x( were selected closely to « to guarantee the convergence.
The computed asymptotic error constant agrees up to 8 significant dig-
its with the theoretical one. The computed zero is accurate up to 300
significant digits, although the first 15 digits are displayed.

Iterative method YK1 with (A, y,a,b) = (—1,—2,—1,0) applied to

test functions f(z) =1— % +sin"'(z? - 1), f(z) = e‘“Q% + cosz -

log(1+z—7) and f(z) = @ D* 54 (2 1) 4-5(x—1)2—1, clearly shows
successful asymptotic error constants with eighth-order convergence for
suitable initial values chosen near «. Tables 2, 3 and 4 list iteration
indexes n, approximate zeros x,, residual errors |f(z,)|, errors |e,| =

|2, — | and computational asymptotic error constants | | as well as
-

the theoretical asymptotic error constant 7.

TABLE 2. Convergence for
f(@)=1—%+sin"(z? — 1) with o &~ 0.594810968398

n Tn, [f(@n)l len] = |on — af |C:f18| n
0 0.7 0.114815 0.105189
1 || 0.594810968314147 | 8.91737x10~ ' | 8.42220x10~** | 0.0056190363 | 0.0028544234
2 || 0.594810968398369 | 7.65128x107 %% | 7.22641x10~%% | 0.0028544234
3 || 0.594810968398369 0.x10 359 0. x 10350
TABLE 3. Convergence for
5
__ ,—xr°sinx o : _
flz) =e " 2% +cosx-log(l + o — ) witha =7
n Tn If (zn)] len| = lzn — of ’ﬁ[ n
0 2.965 0.191286 0.176593
1 || 3.14159265248208 | 1.10772x10~°2 | 1.10771x107% | 0.001171241754 | 0.000012094207
2 || 3.14159265358979 | 2.74158x10~ 77 | 2.74156x10~77 | 0.000012094207
3 || 3.14159265358979 0.x107349 0. x 107349
TABLE 4. Convergence for
_1)2 . .
f(z) = elz=1) Bp(z—1)*+5(x—1)2~1 witha = 1+iv5
n Tn [f(zn)l len] = |zn — al [ e:fls ‘ n
0 0.96 +2.3 7 1.51612 0.0754142
1 || 0.99999999909 + 2.236067977514 | 1.622x10~ 8 9.071x10~° | 0.86709637 | 0.13743472
2 || 1.00000000000 + 2.23606797749i | 1.127x10~ "2 6.304x107 74 0.13743472
3 || 1.00000000000 + 2.23606797749i | 0.x107348 0. x 107349
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TABLE 5. Comparison of |z, — «| for various iterative methods

P o Tl [ (S5 | (2R [ (59 YKL [ Vi | s
f1 —0.86 | |1 — | | 5.60e-07* | 2.18e-07 | 1.02e-07 | 2.74e-08 | 5.82e-08 | 2.20e-07
|z2 — «f 1.03e-44 | 2.38e-54 | 3.37e-57 | 2.31le-62 | 2.67e-59 | 2.7le-54
|xs —a | 7.47e-309 | 0.e-350 0.e-350 0.e-350 0.e-350 0.e-350
f2 1.45 |1 — «f 1.00e-07 | 2.41e-08 | 1.82e-08 | 6.14e-09 | 1.02e-08 | 2.21e-08
|z2 — «f 1.15e-49 | 3.96e-61 | 2.40e-62 | 3.04e-67 | 1.10e-64 | 1.89e-61
|3 — o] | 3.05e-343 | 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349
f3 —1.3 | |z1 — | | 4.95e-08 | 3.29e¢-07 | 2.51e-07 | 6.22e-08 | 1.00e-07 | 2.71e-07
|z2 — «f 4.27e-52 | 8.83e-51 | 5.95e-52 | 2.30e-57 | 9.13e-56 | 1.51e-51
|z3 — «f 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349
fa 0.065 | |z1 — «f 4.46e-07 | 3.03e-09 | 7.52e-11 | 4.97e-10 | 2.29e-10 | 6.62e-09
|xo — ] | 7.60e-43 | 2.49e-67 | 1.70e-80 | 2.49e-75 | 1.08e-76 | 1.60e-64
|xs — a | 3.17e-293 | 0.e-482 0.e-508 0.e-498 0.e-501 0.e-476
|za — 0.e-641
f5 —1.75 | |z1 — «f 1.99e-07 | 3.71e-08 | 3.71e-08 | 3.05e-08 | 3.04e-08 | 3.09e-08
|xo —a] | 3.25e-49 | 2.61e-62 | 2.51e-62 | 6.62e-63 | 6.75e-63 | 8.03e-63
|z — a | 9.95e-342 | 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349
fe 1.65¢ | |z1 — | | 5.45e-08 | 1.74e-08 | 1.07e-08 | 5.03e-08 | 3.07e-08 | 7.23e-09
|z2 — «f 3.17e-52 | 3.72e-63 | 2.28e-64 | 1.42e-58 | 2.23e-60 | 9.94e-66
|zs — «f 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349
fr 1.3 |z1 — o] | 2.12e-07 | 5.85e-08 | 4.68e-08 | 8.68e-09 | 1.95e-08 | 3.51e-08
|xa — ] | 3.55e-48 | 3.69e-58 | 4.64e-59 | 1.11e-65 | 1.78e-62 | 4.63e-60
|zs — af | 1.29e-333 | 0.e-349 0.e-349 0.e-349 0.e-349 0.e-349

* 5.60e-07 = 5.60 x10~7

Convergence behavior was confirmed for further test functions below:

Va2 +2sin( %) + 7(1,41“) -3 -
z) = 2° + 7 —sina® +log(a® + m + 1), a = iy/7, xo = 1.65i, i = /—1,

4 : us
z* + sin( %

log(z2+2z+2)

, a=—1, xro = —0.86,

e —sinz +3cosx + 5, a~x —1.207647827130918, xo = —1.3,

(z)
(z)
(2)
(z) = e®sinz + log(1 + 2?), a =0, zo = 0.065,
(z)
(z)
)

17

)755 OC:\/E7 1'0:1.3,

L o=-2 x¢o=—1.75,

Here logz (z € C) represents a principal analytic branch with —7m <
Im(log z) < .
Table 5 lists the values of |z, — «| within the prescribed error bound for
various seventh- or eighth-order methods KLW (1.14), BRW (1.15),
BWR (1.16) and YK (1.9) identified by case number ¢ in Table 1.
As Table 5 suggests, proposed 3-step methods YKi show accept-
able performance as compared with existing 3-step iterative methods
KLW, BRW and BWR. Under the same order of convergence, one
should note that the speed of local convergence of |z, — ¢ is dependent
on ¢;j, namely f(z) and . During the current numerical experiments
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for the chosen test functions, YK1 has shown best performance for
1, fa, f3, f5, f7, YKS8 for fg, while BWR for f;. The efficiency index
defined by EI = p'/?, with p as the order of convergence and d the num-
ber of new evaluations of f(z) or its derivatives per iteration, is equally
81/4 ~ 1.68179 for YKi, BRW and BWR, and is better than v/2, the
efficiency index of Newton’s method.
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(6]
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